

Structure-activity relationships guided engineering of AAV capsids with optimized skeletal muscle, cardiac muscle, and CNS tropism

Kevin Olivieri*, Jie Tan*, Lin-Ya Huang*, Jackson Lee, Stephanie Malyszka, Sri Siripurapu, Allegra Fieldsend, Cynthia Pryce, Matt Edwards, Bryan Mastis, Roberto Calcedo, Laura Richman, Sherry Cao, Charles Albright

*, Equal contributions

All authors are employees of Affinia Therapeutics

Our objectives: Best-in-class capsids for muscle and CNS

- Capsids with increased expression and fraction of cells expressing
 - Skeletal and Cardiac muscle
 - Skeletal muscle
 - Cardiac muscle
 - CNS
- Capsids that detarget the liver and DRG
- Capsids with acceptable manufacturing and seroprevalence

Structure-activity relationships (SAR) guide capsid design

	Biased library (Capsid Optimization)	Random library (Capsid Discovery)
Library design	Rational design and random (AAV and peptide)	Random (AAV and peptide)
Search space	Narrow per each library	Wide
Library size	<u><</u> 50k	Theoretically large, for example 1.3 billion for 7-mer
Library coverage	>90%	<0.1%
Variant performance assessment	Tissue Enrichment: Tissue levels normalized for input concentration	Variant concentration
Advantages	 Deep coverage of the entire library, including winners and losers Built-in amino acid redundancy compensates for data variability and allows statistics Machine learning possible (ML) 	 Samples large variant sequence space Uses data from "winners", not losers ML difficult
		Λ

Variant ID

Application example: Liver detargeted myotropic capsid

Dual strategy of employing AAV + peptide sequences increases capsid diversity and range of performance

- Designed and screened a peptide library for myotropism
- Designed and screened an AAV capsid backbone library for liver detargeting

Identifying myotropic peptides using SAR from VR8 library

Linear modeling to identify myotropic peptide SAR

Network analysis and structural modeling to validate findings

Identifying liver detargeted AAVs using SAR from VR1 library

AFT-MR-0026: Mouse study of VR1 library, 3.5K capsids, total dose 5e13 vg/kg, IV, C57BL/6 mice, 7 active + 1 control, day 28 AFT-PR-0018: Pooled capsid study, 3.4e12vg/kg ICM or 5e13 vg/kg IV, 3 cynos per group, day 30.

Capsids identified that increase expression in both skeletal & heart muscle while detargeting liver

AFT-PR-0014, 3 cynos, IV, 5e13 vg/kg total dose, CMV promoter, day 28

8

M1 and M3 increased GFP+ cells relative to AAV9 in both skeletal & heart muscle while M1 decreased liver GFP+ cells

AFT-PR-0020; Cyno (3 animals per group); dose 1e14vg/kg delivered IV; GFP and CAG promoter; day 28

M1 and M3 capsids increased GFP protein in both skeletal & heart muscle while M1 decreased liver GFP relative to AAV9 Single clone study, IHC, 10x magnification

AFT-PR-0020; Cyno (3 animals per group); dose 1e14vg/kg delivered IV; GFP and CAG promoter; day 28

Using SAR to differentiate muscle types: Capsids for heart

Pooled capsid study

AFT-PR-0014, 3 cynos, IV, 5e13 vg/kg total dose, CMV promoter, day 28

Using SAR to differentiate muscle types: Capsids for skeletal muscle

Pooled capsid study

Additional capsids optimized for CNS (Normalized to AAV9, IV delivery)

AFT-PR-0021: 55K capsid pooled study, CMV promoter, total dose 2e13 vg/kg delivered IV (3.6e8 per capsid), 3 cynos, day 28; AFT-PR-0019, 3 cynos, IV, 2e13vg/kg total dose, undisclosed therapeutic transgene, UBC promoter, day 28

In-situ hybridization data for CNS capsid

ISH/NeuN IHC double staining demonstrates N1 neuronal tropism Frontal cortex Motor cortex Basal ganglia

Pink=transgene ISH Green=cell marker IHC (NeuN=neurons; GFAP=astrocytes)

Novel capsids have commercially acceptable manufacturing yields and seroprevalence

Our objectives: Best-in-class capsids for muscle and CNS

- Capsids with increased expression and fraction of cells expressing
 - Skeletal and Cardiac muscle (M1, M3)
 - Skeletal muscle (S1, S2)
 - Cardiac muscle (H1, H2)
 - CNS (N1, N2, N3, N4)
- Capsids that detarget the liver and DRG
- Capsids with acceptable manufacturing yields and seroprevalence

Acknowledgements

- Affinia Therapeutics
 - Joe Collins
 - Anthony DeMarco
 - Paul Freeman
 - Charles Gualtieri
 - Isabelle Guelin
 - Tyler Ironside
 - Stephen Janack
 - Kimberly Le
 - Joshua McDonald
 - Giri Murlidharan
 - John Reece-Hoyes
 - Ramin Kamran Sami
 - Lisa Stanek
 - Cara West
- We also thank Vertex Pharmaceuticals with whom we are collaborating on the discovery of muscle capsids

18

Setting a new standard

43 Foundry Avenue, Suite 120, Waltham, MA 02453 affiniatx.com